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Native Image Build Process
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JIT AOT

Load JAR files from disk Load executable from disk 

Uncompress class files 

Verify class definitions 

Execute in interpreter (~20x slower) 

Gather profiling feedback 

Compile to machine code 

 
Execute at peak performance 

 

Execute at peak performance 
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JIT AOT
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JIT AOT
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Demo: startup and performance
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Reduced Attack Surface

• No new unknown code can be loaded at run time 

• Only paths proven reachable by the application are included in the image 

• Reflection is disabled by default and needs an explicit include list 

• Deserialization only enabled for specified list of classes 

• Just-in-time compiler crashes, wrong compilations, or “JIT spraying” to create 

machine code gadgets are impossible
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Lightweight containerized applications

YouTube: A 1.5MB Java Container App? Yes you can! by Shaun Smith



What’s the catch?



• GraalVM 🤝  Reflection! 

• Native Image tries to resolve the target elements through a static analysis that detects calls to 
the Reflection API 

• If the analysis can not automatically detect your use of reflection, you might need 
additional configuration 

• Trace reflection, JNI, resource usage on the JVM with the tracing agent 

• Manual adjustment / addition might still be necessary

GraalVM & Reflection?
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Reflection in 3rd-party libraries
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Required Build Time Step

• Computational effort necessary at build time 

• Need a powerful machine with the same target architecture & OS 

• Use GraalVM with GitHub Actions: github.com/marketplace/actions/github-action-for-graalvm 

• Many larger apps can build with 2 GB of memory 

• Develop in JIT mode for fast development, only use AOT for final deployment 

• For best throughput, use profile-guided optimizations

https://github.com/marketplace/actions/github-action-for-graalvm


GraalVM & 
Spring Boot tips 
and tricks



Native Image support evolution in Spring Boot



• New app lifecycle phase that AOT optimizes and transforms your code for native compilation 

• Operates on bean definitions 

• Produces the following: 

• Java source code 

• Configuration files for Native Image (META-INF/native-image/*.json)

AOT processing



Registering hints for Native Image

@Bean
@RegisterReflectionForBinding(Person.class)

public ItemProcessor<Person, Person> processor() {
return item -> new Person(item.firstName().toUpperCase(), 

item.lastName().toUpperCase());

}

static class BatchApplicationRuntimeHints implements RuntimeHintsRegistrar {

@Override
public void registerHints(RuntimeHints hints, ClassLoader classLoader) {

hints.resources().registerPattern("persons.csv");
}

}



• Build, test and run Java applications as native executables 

• Out-of-the-box support for native JUnit 5 testing 

• testing Java code with JUnit 5 behaves in the same way in native execution as with the JVM 

• allows libraries in the JVM ecosystem to run their test suites via GraalVM Native Image 

plugins { 
id 'org.graalvm.buildtools.native' version “0.9.22” // or a newer version 
}

Native Build tools: Official Gradle and Maven Plugins 🏗



• @EnabledInNativeImage
• used to signal that the annotated test class or test method is 

only enabled when executing within GraalVM native images
• when applied at the class level, all test methods within that class will be 

enabled within a native image

• @DisabledInNativeImage 
• used to signal that the annotated test class or test method is 

only disabled when executing within a GraalVM native image. 

GraalVM Native Image & JUnit



What’s new in 
GraalVM
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• -H:+AllowVMInspection -> --enable-monitoring 
• --enable-monitoring=<all,heapdump,jfr,jvmstat> 

• added support for jvmstat in Native Image 

• keep building out the JFR support in Native Image (thanks to Red Hat for their contributions!)

New monitoring features in GraalVM Native Image 📈
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Micrometer 🤝 Native Image 
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GraalVM Community roadmap on GitHub

https://github.com/orgs/oracle/projects/6

https://github.com/orgs/oracle/projects/6


What’s next for GraalVM



What’s next for Native Image

• Simplifying configuration and compatibility for Java libraries 

• Continuing with peak performance improvements 

• Keep working with Java framework teams to leverage all 

Native Image features, develop new ones, improve 

performance, and ensure a great developer experience 

• Further reduce build time and footprint of the Native Image 

builder 

• IDE support for Native Image configuration and agent-based 

configuration 

• Further improving GC performance and adding new GC 

implementations 
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Get started with GraalVM

bash <(curl -sL https://get.graalvm.org/jdk)\ 
graalvm-ce-java19-22.3.0 

sdk install java 22.3.r19-grl

https://get.graalvm.org/jdk


More about GraalVM @ Spring I/O



Thank you!

Alina Yurenko

@alina_yurenko

https://twitter.com/alina_yurenko

