
Alina Yurenko

Developer Advocate for GraalVM

Oracle Labs

Spring I/O Logan Armstrong @ Unsplash

Going Native: Fast and Lightweight
Spring Boot Applications with GraalVM

 native-image MyMainClass
./mymainclass

JIT AOT
java MyMainClass

 native-image MyMainClass
./mymainclass

JIT AOT
java MyMainClass

Clojure

Native Image deployments

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Native Image Build Process

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

7

JIT AOT

Load JAR files from disk Load executable from disk

Uncompress class files

Verify class definitions

Execute in interpreter (~20x slower)

Gather profiling feedback

Compile to machine code

Execute at peak performance

Execute at peak performance

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

9

JIT AOT

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Virtual Machine
Runtime and

Compiler
Garbage Collector

Application payload

Garbage Collector

Compilation Data
Structures

Profiling Feedback

Application
Machine Code

Memory

10

JIT AOT

Application payload

Dynamic Code
Cache

Metaspace
Class Files

VM Runtime
and Compiler

Garbage
Collector

Profiling
Feedback

Memory Scalability

Application payload

Application
Machine Code

Garbage
Collector

Application payload
Application payload

Application payload
Application payload

Application payload

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

Application payload

Dynamic Code
Cache

Metaspace
Class Files

Profiling
Feedback

Compilation
Data Structures

shared

duplicated
per process

Demo: startup and performance

11

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Reduced Attack Surface

• No new unknown code can be loaded at run time

• Only paths proven reachable by the application are included in the image

• Reflection is disabled by default and needs an explicit include list

• Deserialization only enabled for specified list of classes

• Just-in-time compiler crashes, wrong compilations, or “JIT spraying” to create

machine code gadgets are impossible

Low Resource
UsageStart Fast

Compact
Packaging

Minimize
Vulnerability

Lightweight containerized applications

YouTube: A 1.5MB Java Container App? Yes you can! by Shaun Smith

What’s the catch?

• GraalVM 🤝 Reflection!

• Native Image tries to resolve the target elements through a static analysis that detects calls to
the Reflection API

• If the analysis can not automatically detect your use of reflection, you might need
additional configuration

• Trace reflection, JNI, resource usage on the JVM with the tracing agent

• Manual adjustment / addition might still be necessary

GraalVM & Reflection?

17

Reflection in 3rd-party libraries

18

Required Build Time Step

• Computational effort necessary at build time

• Need a powerful machine with the same target architecture & OS

• Use GraalVM with GitHub Actions: github.com/marketplace/actions/github-action-for-graalvm

• Many larger apps can build with 2 GB of memory

• Develop in JIT mode for fast development, only use AOT for final deployment

• For best throughput, use profile-guided optimizations

https://github.com/marketplace/actions/github-action-for-graalvm

GraalVM &
Spring Boot tips
and tricks

Native Image support evolution in Spring Boot

• New app lifecycle phase that AOT optimizes and transforms your code for native compilation

• Operates on bean definitions

• Produces the following:

• Java source code

• Configuration files for Native Image (META-INF/native-image/*.json)

AOT processing

Registering hints for Native Image

@Bean
@RegisterReflectionForBinding(Person.class)

public ItemProcessor<Person, Person> processor() {
return item -> new Person(item.firstName().toUpperCase(),

item.lastName().toUpperCase());

}

static class BatchApplicationRuntimeHints implements RuntimeHintsRegistrar {

@Override
public void registerHints(RuntimeHints hints, ClassLoader classLoader) {

hints.resources().registerPattern("persons.csv");
}

}

• Build, test and run Java applications as native executables

• Out-of-the-box support for native JUnit 5 testing

• testing Java code with JUnit 5 behaves in the same way in native execution as with the JVM

• allows libraries in the JVM ecosystem to run their test suites via GraalVM Native Image

plugins {
id 'org.graalvm.buildtools.native' version “0.9.22” // or a newer version
}

Native Build tools: Official Gradle and Maven Plugins 🏗

• @EnabledInNativeImage
• used to signal that the annotated test class or test method is

only enabled when executing within GraalVM native images
• when applied at the class level, all test methods within that class will be

enabled within a native image

• @DisabledInNativeImage
• used to signal that the annotated test class or test method is

only disabled when executing within a GraalVM native image. 

GraalVM Native Image & JUnit

What’s new in
GraalVM

27

• -H:+AllowVMInspection -> --enable-monitoring
• --enable-monitoring=<all,heapdump,jfr,jvmstat>

• added support for jvmstat in Native Image

• keep building out the JFR support in Native Image (thanks to Red Hat for their contributions!)

New monitoring features in GraalVM Native Image 📈

28

Micrometer 🤝 Native Image

29

GraalVM Community roadmap on GitHub

https://github.com/orgs/oracle/projects/6

https://github.com/orgs/oracle/projects/6

What’s next for GraalVM

What’s next for Native Image

• Simplifying configuration and compatibility for Java libraries

• Continuing with peak performance improvements

• Keep working with Java framework teams to leverage all

Native Image features, develop new ones, improve

performance, and ensure a great developer experience

• Further reduce build time and footprint of the Native Image

builder

• IDE support for Native Image configuration and agent-based

configuration

• Further improving GC performance and adding new GC

implementations

Get started with
GraalVM

Get started with GraalVM

bash <(curl -sL https://get.graalvm.org/jdk)\
graalvm-ce-java19-22.3.0

sdk install java 22.3.r19-grl

https://get.graalvm.org/jdk

More about GraalVM @ Spring I/O

Thank you!

Alina Yurenko

@alina_yurenko

https://twitter.com/alina_yurenko

