

Vector Similarity Search in Spring With Redis Stack

Brian Sam-Bodden

BARCELONA MAY 18-19 / WWW.SPRINGIO.NET

bsb@redis.com

TLDR

Why? Vast majority of data is Unstructured data!

What? Vector Databases store vectors efficiently

TLDR

Why? Vast majority of data is Unstructured data!

What? Vector Databases store vectors efficiently

TLDR

Why? Vast majority of data is Unstructured data!

What? Vector Databases store vectors efficiently

TLDR

Why? Vast majority of data is Unstructured data!

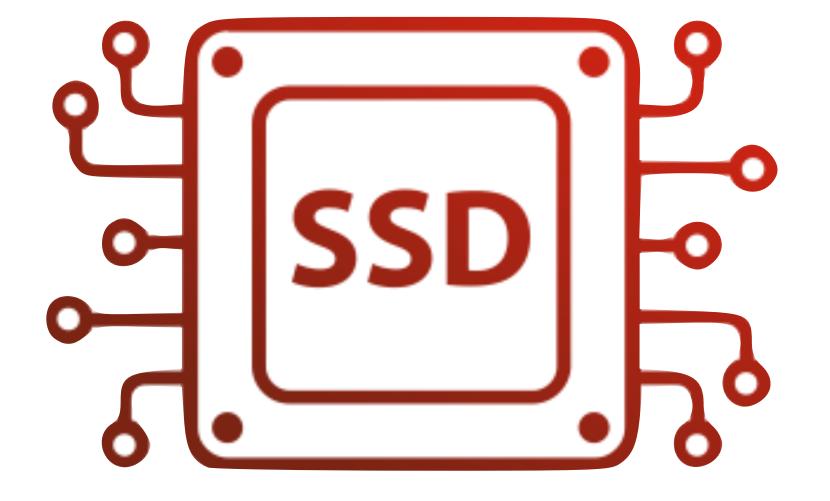
What? Vector Databases store vectors efficiently

REmote DIctionary Server

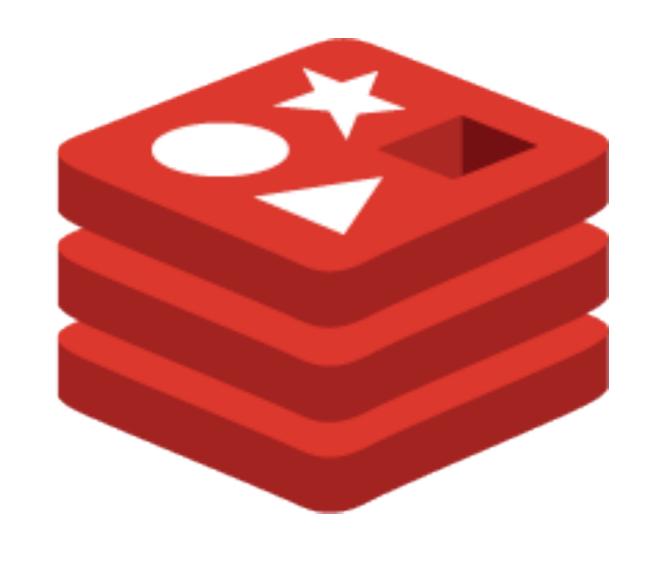
REmote DIctionary Server

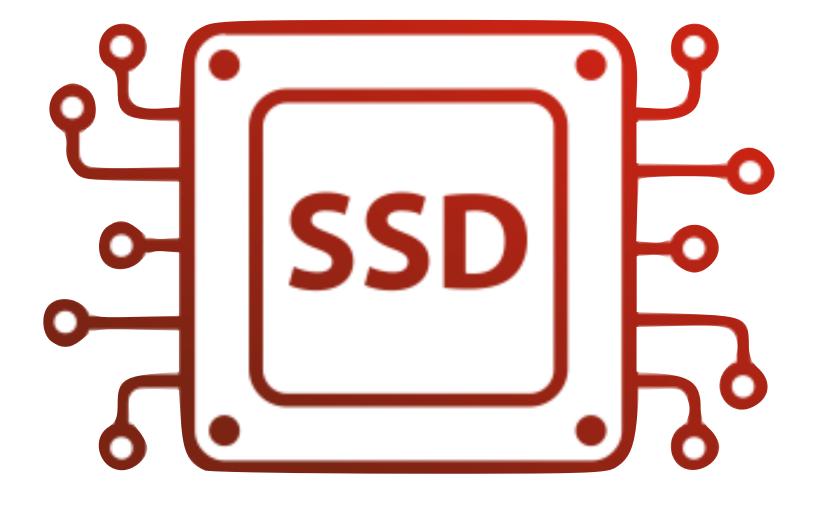
REmote DIctionary Server

REmote Dictionary Server



In-memory First Optionally Persistent





In-memory First

Optionally Persistent

Strings

Sets
Strings

Sets

Strings

Lists

Sets Hashes

Strings Lists

Hashes Sets 1

Strings

Bitmaps

Lists

Sets Hashes Sorted Sets

Strings Lists Bitmaps

Sets Hashes Sorted Sets

Strings Lists Bitmaps Geospatial

Sets Hashes Sorted Sets Bit Field

Strings Lists Bitmaps Geospatial

Sets Hashes Sorted Sets Bit Field

Strings Lists Bitmaps Geospatial Streams

Sets Hashes Sorted Sets Bit Field HyperLogLog

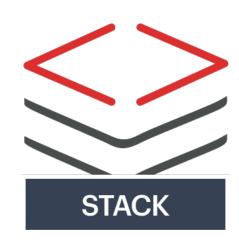
Strings Lists Bitmaps Geospatial Streams

Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams

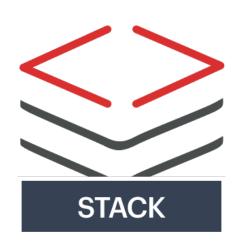
Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams



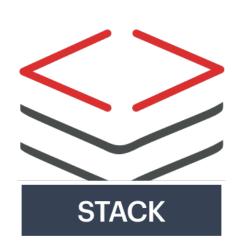
Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams



Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams



JSON

Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams

JSON

Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams

Documents and Probabilistic Data Structures

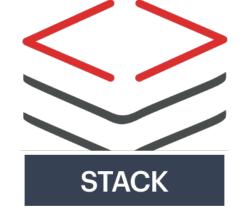
Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams

Documents and Probabilistic Data Structures

Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams



Documents and Probabilistic Data Structures

Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams

Documents and Probabilistic Data Structures

Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams

Documents and Probabilistic Data Structures

Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams

4

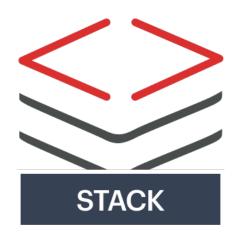


Redis-side Computing

Documents and Probabilistic Data Structures

Sets Hashes Sorted Sets Bit Field HyperLogLog

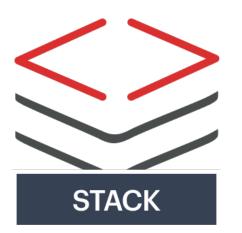
Strings Lists Bitmaps Geospatial Streams



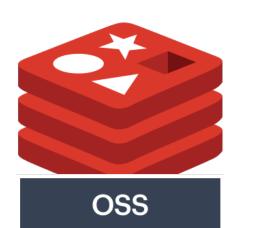
Documents and Probabilistic Data Structures

Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams



Documents and Probabilistic Data Structures



Sets Hashes Sorted Sets Bit Field HyperLogLog

Strings Lists Bitmaps Geospatial Streams

Documents and Probabilistic Data Structures

Sorted Sets HyperLogLog Sets Bit Field Hashes [1]Strings Geospatial Bitmaps Lists Streams

node-redis

Redis-side Computing

JSON

Documents and Probabilistic Data Structures

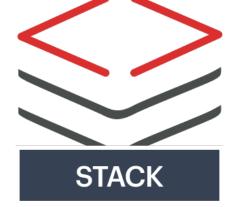
HyperLogLog Sorted Sets Sets Bit Field Hashes 1 Strings Geospatial Bitmaps Lists Streams

Java Jedis

node-redis

redis-py

Functions



JSON

Documents and Probabilistic Data Structures

Sets 1

Hashes

Sorted Sets

Bit Field

HyperLogLog

Strings

Lists

Bitmaps

Geospatial

Streams

Jedis

node-redis

redis-py

Developer Experience

Search

Functions

JSON

Documents and Probabilistic Data Structures

1

Sets

Hashes

Sorted Sets

Bit Field

HyperLogLog

Strings

Lists

Bitmaps

Geospatial

Streams

Real-Time Data Platform

node-redis

redis-py

Developer Experience

Search

Functions

JSON

Documents and Probabilistic Data Structures

1

Sets

Hashes

Sorted Sets

Bit Field

HyperLogLog

Strings

Lists

Bitmaps

Geospatial

Streams

A Quick Tour of Redis

The Data Balance

Structured vs. Unstructured

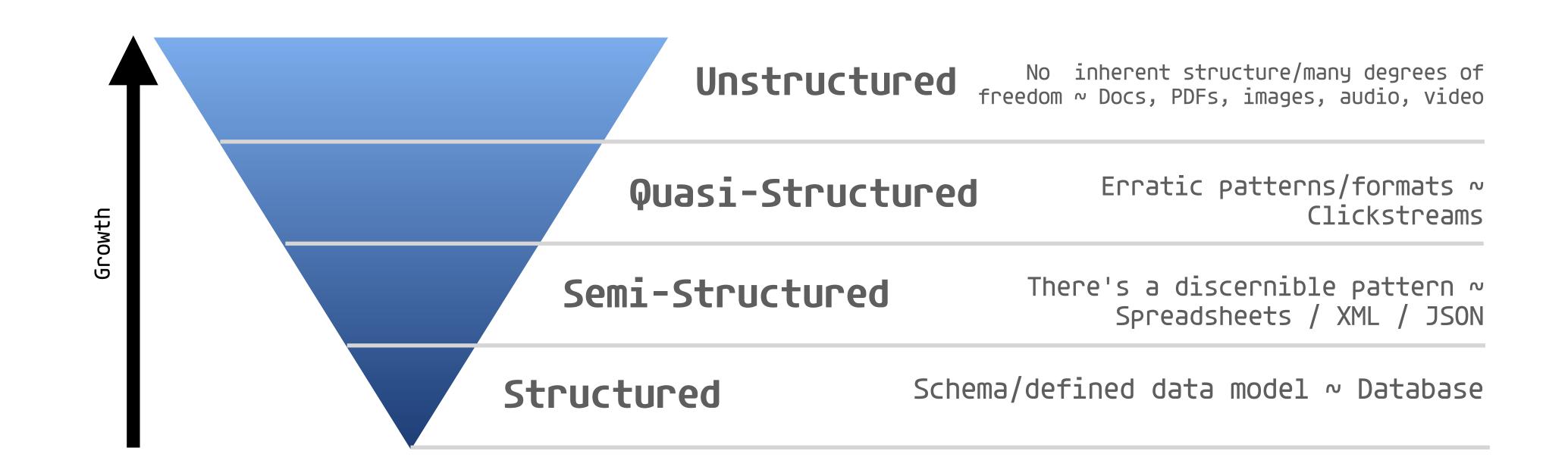
The balanced of data has changed radically...

~80% of the data generated by organizations is Unstructured

IDC report, 2020

... and this percentage is estimated to keep growing

with a compound annual growth rate (CAGR) of 36.5% between 2020 and 2025



How to deal with unstructured data?

Common approaches were labeling and tagging

These are labor intensive, subjective, and error-prone

Embeddings

Machine Learning Embeddings

Machine Learning/Deep Learning has leaped forward in last decade

ML models outperform humans in many tasks nowadays

OV (Computer Vision) models excel at detection/classification

LLMs (Large Language Models) have advanced exponentially

Machine Learning/Deep Learning has leaped forward in last decade

ML models outperform humans in many tasks nowadays

OV (Computer Vision) models excel at detection/classification

LLMs (Large Language Models) have advanced exponentially

Machine Learning/Deep Learning has leaped forward in last decade

ML models outperform humans in many tasks nowadays

OV (Computer Vision) models excel at detection/classification

LLMs (Large Language Models) have advanced exponentially

Shut up, Josh!

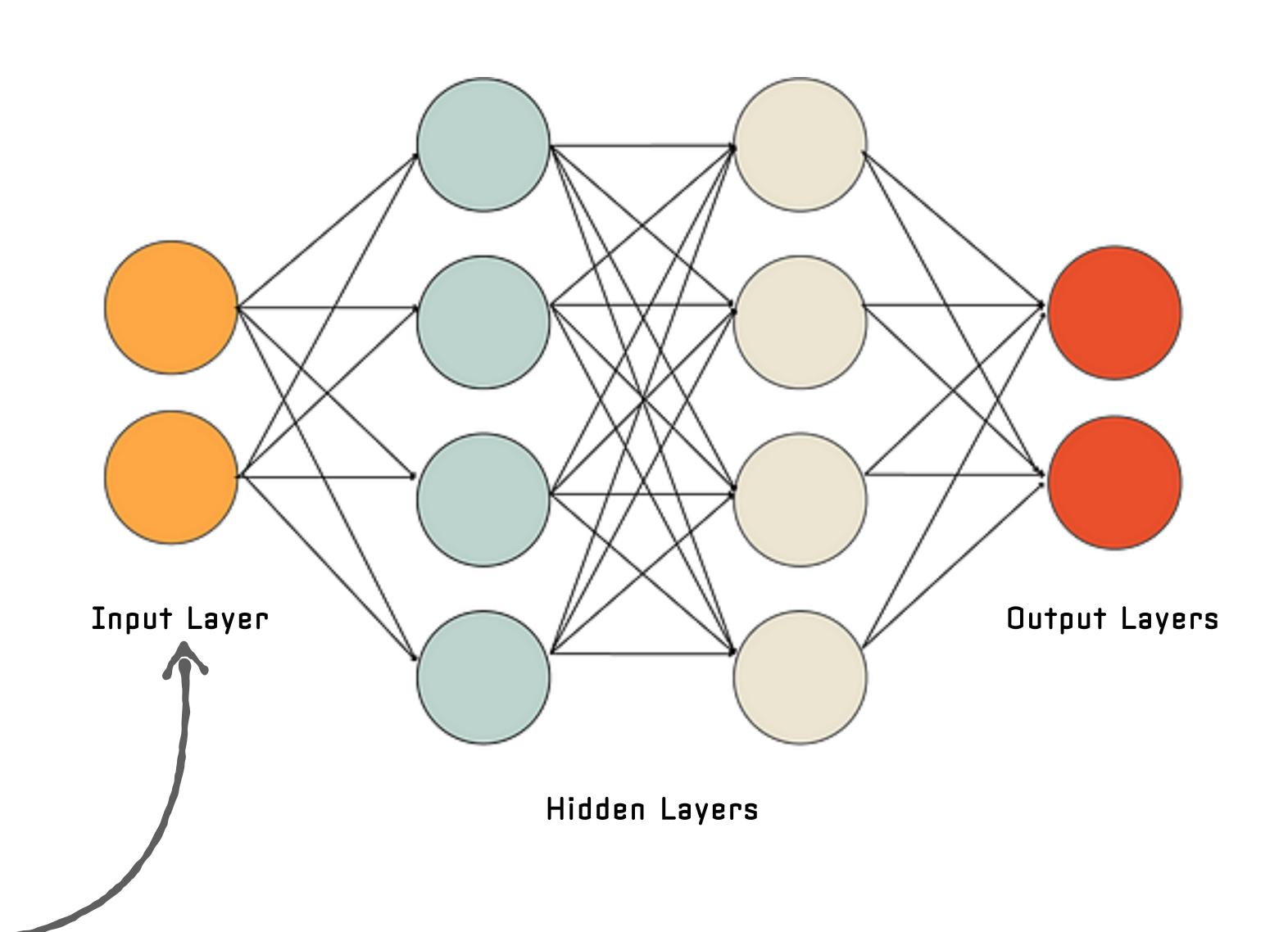
Feature Engineering

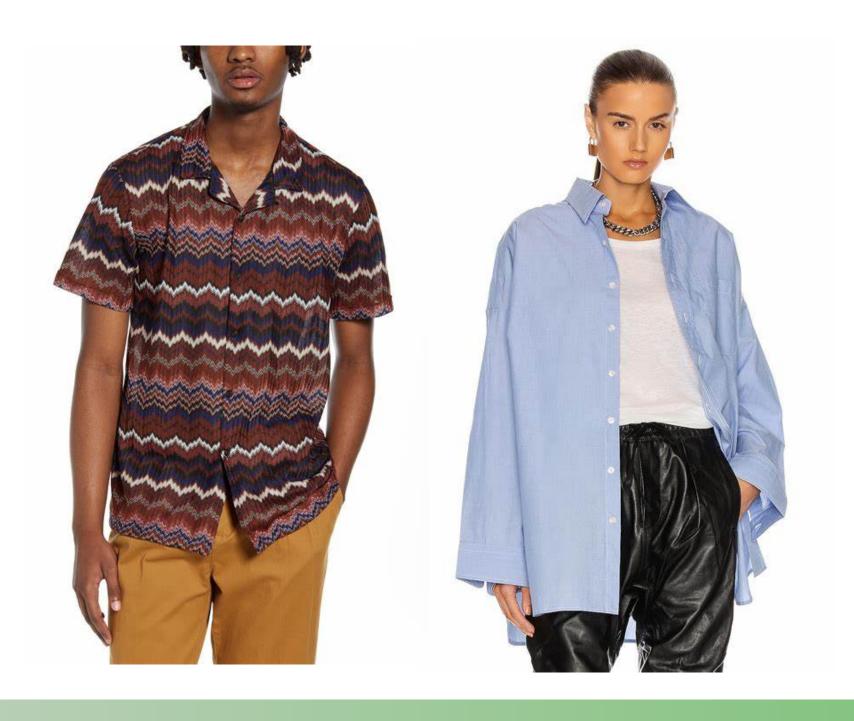
Raw Data

Feature	Value	
Price	150	
Category	Shirt	

Scaled and 1-Hot Encoded

Feature	Value	
Price	0.45	
Category Shirt	1	
Category Pants	0	
Category Coats	0	
Category Shoes	0	





Shirt
Jacket

Automated Feature Engineering

ML models extract latent features

ML models embeddings catch the gray areas between features

The process of generating the embeddings is vectorizing

Generating Vector Embedding for your Data

Steps to Vectorizing

- Choose an Embedding Method
- Clean and preprocess the data as needed
- Train the embedding model
- 4 Generate Embeddings

Better Models, better Vectors

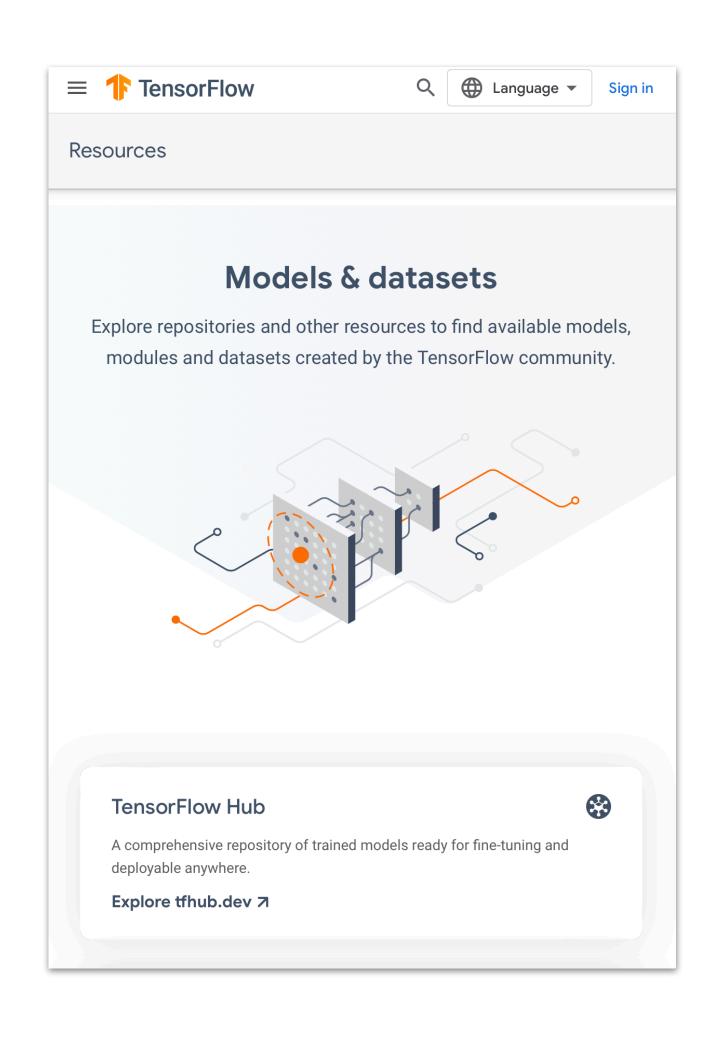
Embeddings can capture the semantics of complex data

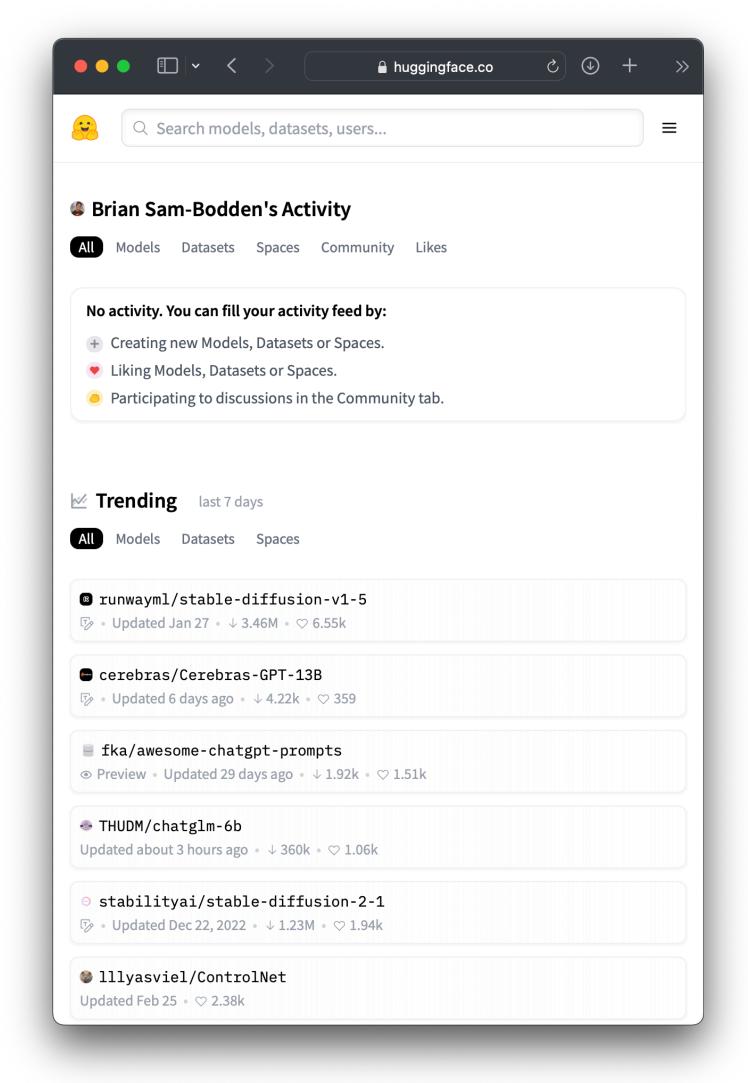
Option #1: Use a pre-trained model

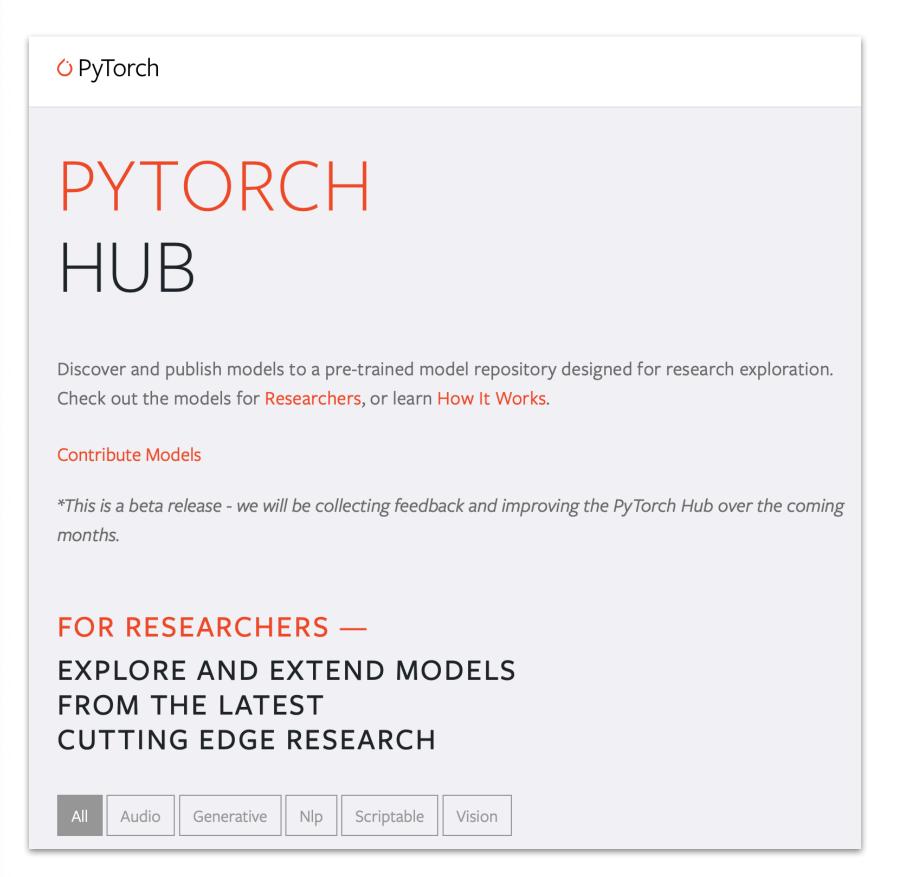
Option #2: train your models with custom data

Vector similarity is a downline tool to analyze embeddings

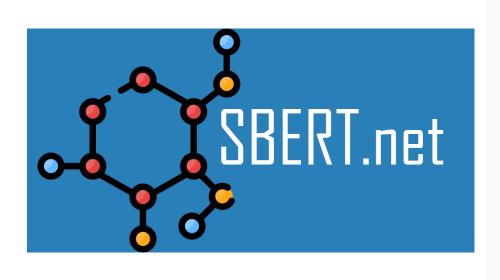
Ever growing collection of pre-trained, trainable and scriptable models





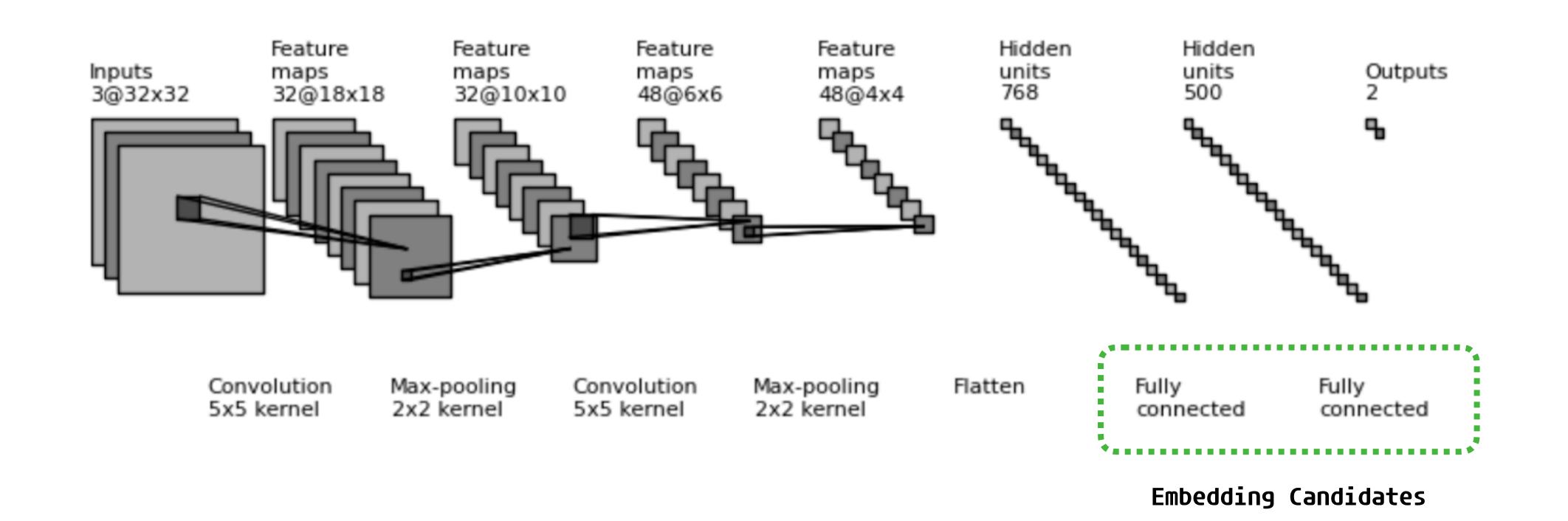


For sentences, SBERT.net provides a variety of pre-trained models:



Model Name	Performance Sentence Embeddings (14 Datasets)	Performance Semantic Search (6 Datasets) ①	† Avg. Performance	Speed	Model Size 1
all-mpnet-base-v2	69.57	57.02	63.30	2800	420 MB
multi-qa-mpnet-base-dot-v1	66.76	57.60	62.18	2800	420 MB
all-distilroberta-v1 🕕	68.73	50.94	59.84	4000	290 MB
all-MiniLM-L12-v2	68.70	50.82	59.76	7500	120 MB
multi-qa-distilbert-cos-v1	65.98	52.83	59.41	4000	250 MB
all-MiniLM-L6-v2	68.06	49.54	58.80	14200	80 MB
multi-qa-MiniLM-L6-cos-v1	64.33	51.83	58.08	14200	80 MB
paraphrase-multilingual-mpnet-base-v2	65.83	41.68	53.75	2500	970 MB
paraphrase-albert-small-v2	64.46	40.04	52.25	5000	43 MB
paraphrase-multilingual-MiniLM-L12-v2	64.25	39.19	51.72	7500	420 MB
paraphrase-MiniLM-L3-v2	62.29	39.19	50.74	19000	61 MB
distiluse-base-multilingual-cased-v1	61.30	29.87	45.59	4000	480 MB
distiluse-base-multilingual-cased-v2	60.18	27.35	43.77	4000	480 MB

Extracted a 1-dimensional layer that's densely packed with information about present features



Storing and creating Vectors

What's is a Vector?

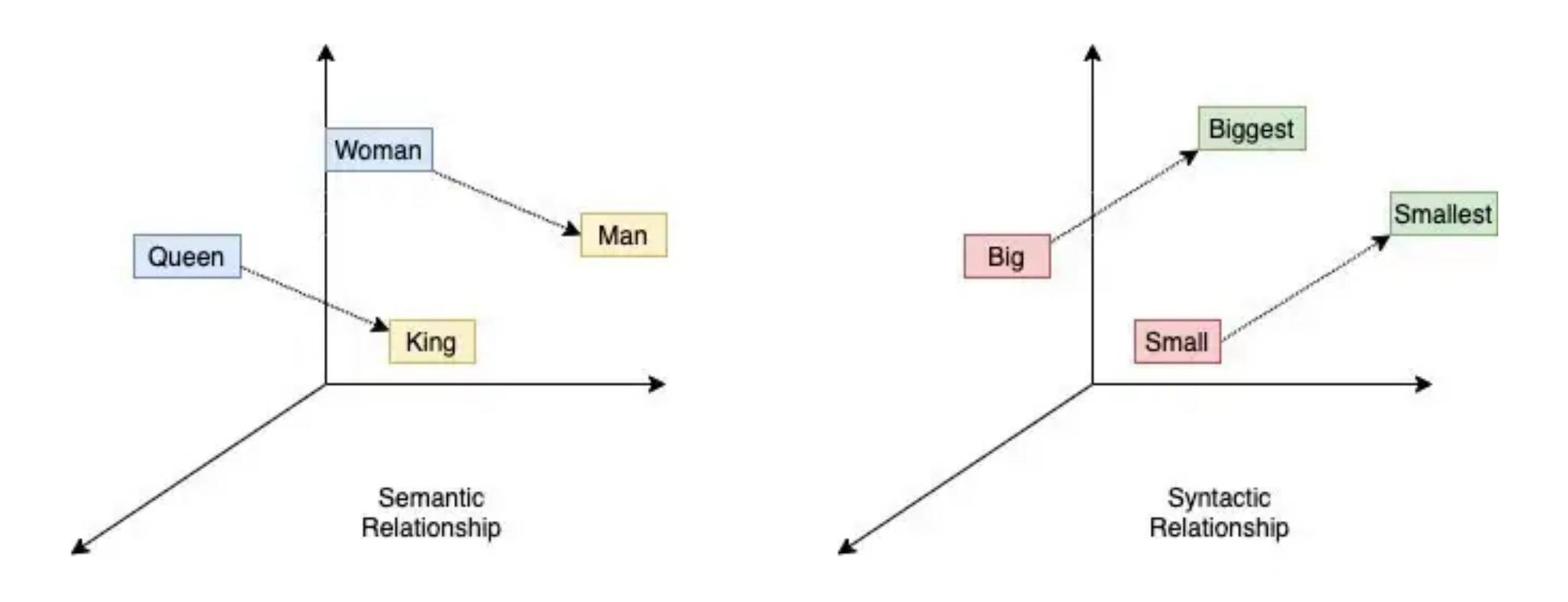
Numeric representation of something in N-dimensional space

Can represent anything... entire documents, images, video, audio

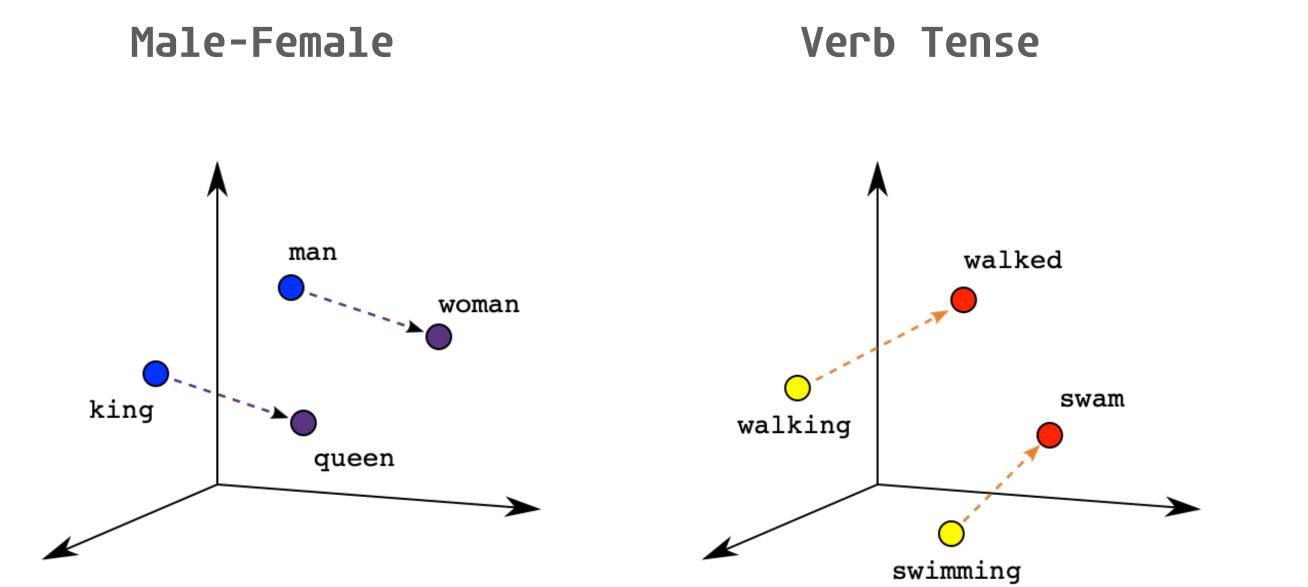
Quantifies features or characteristics of the item

More importantly... they are comparable

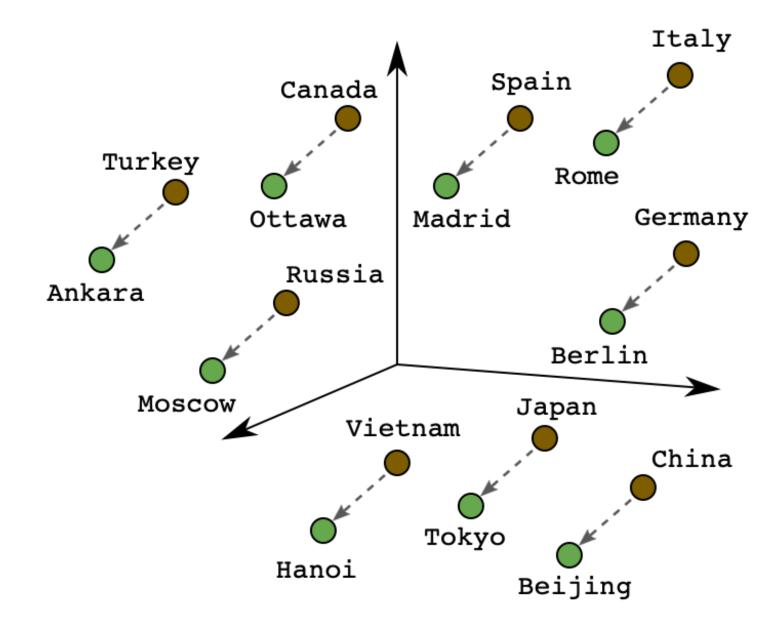
Visually



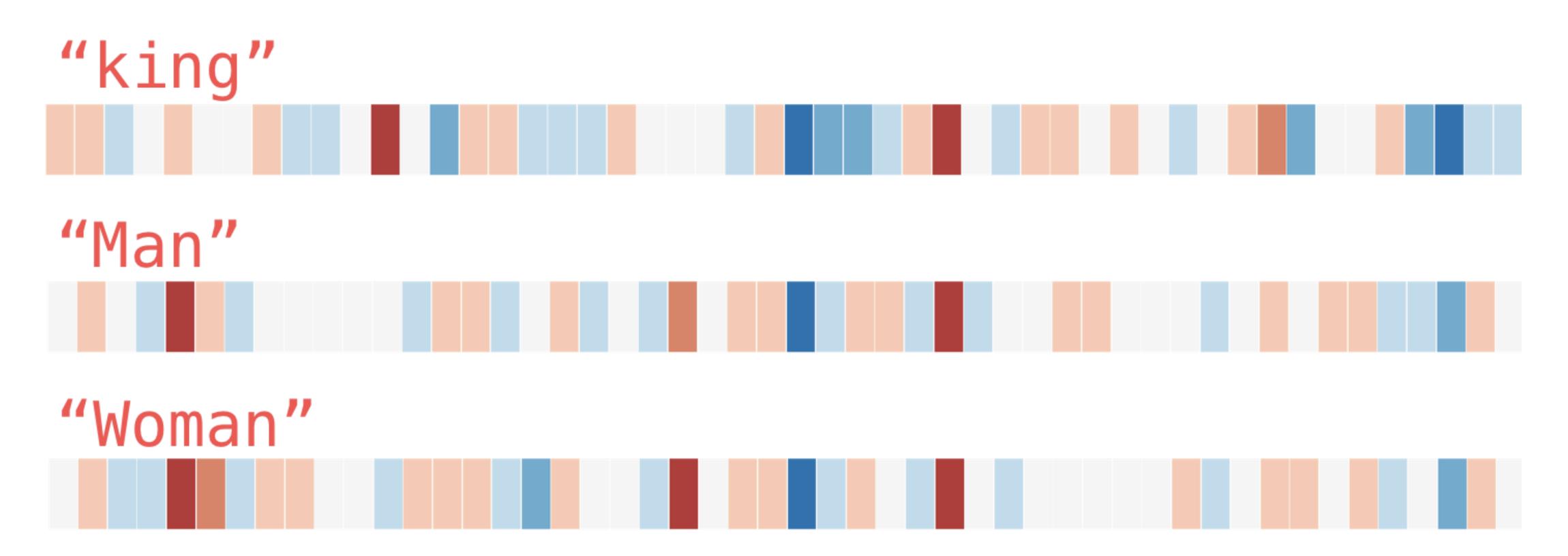
Visually



Country-Capital



Visually



Let's make some Vectors...

Machine Learning in Java

with DJL - https://djl.ai

A Java Framework for Machine Learning

Build, train, deploy ML and DL models

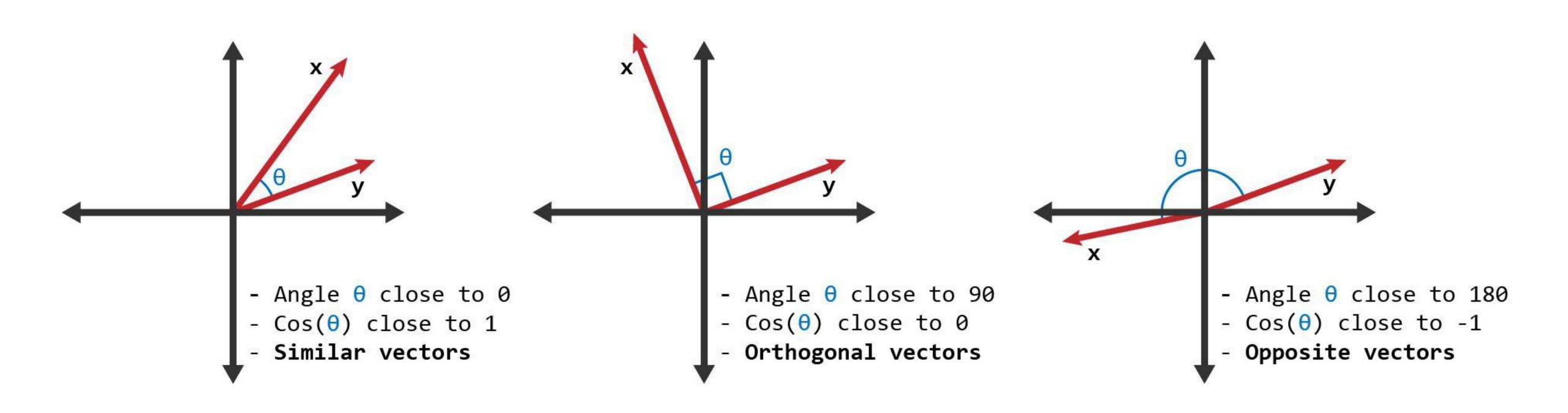
Abstracts PyTorch, Apache MXNet, TensorFlow and ONNX

Opens the world of "Model Zoos" to the Java Community

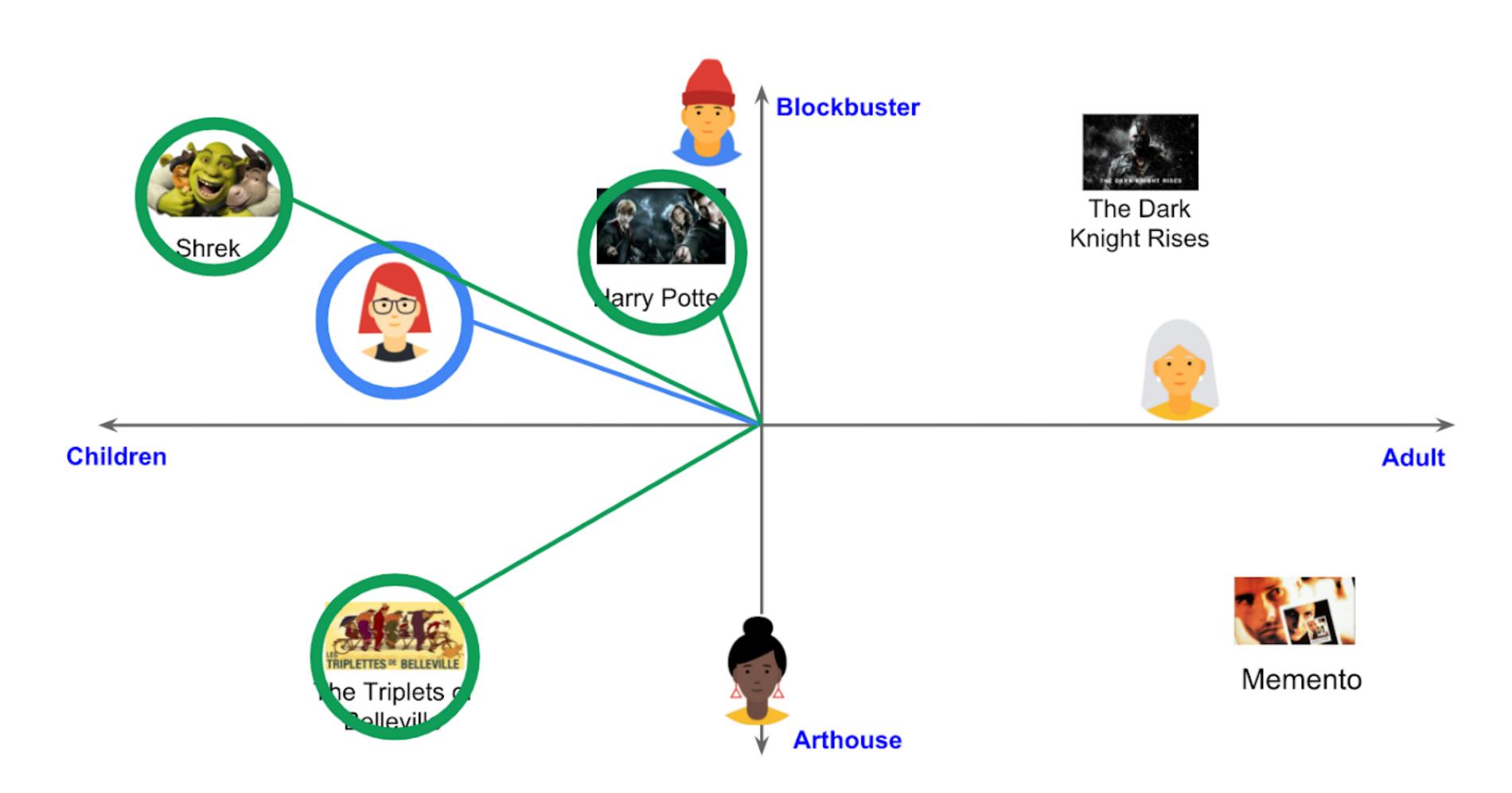
Similarity

Finding similar vectors

Measuring Similarity with Cosines

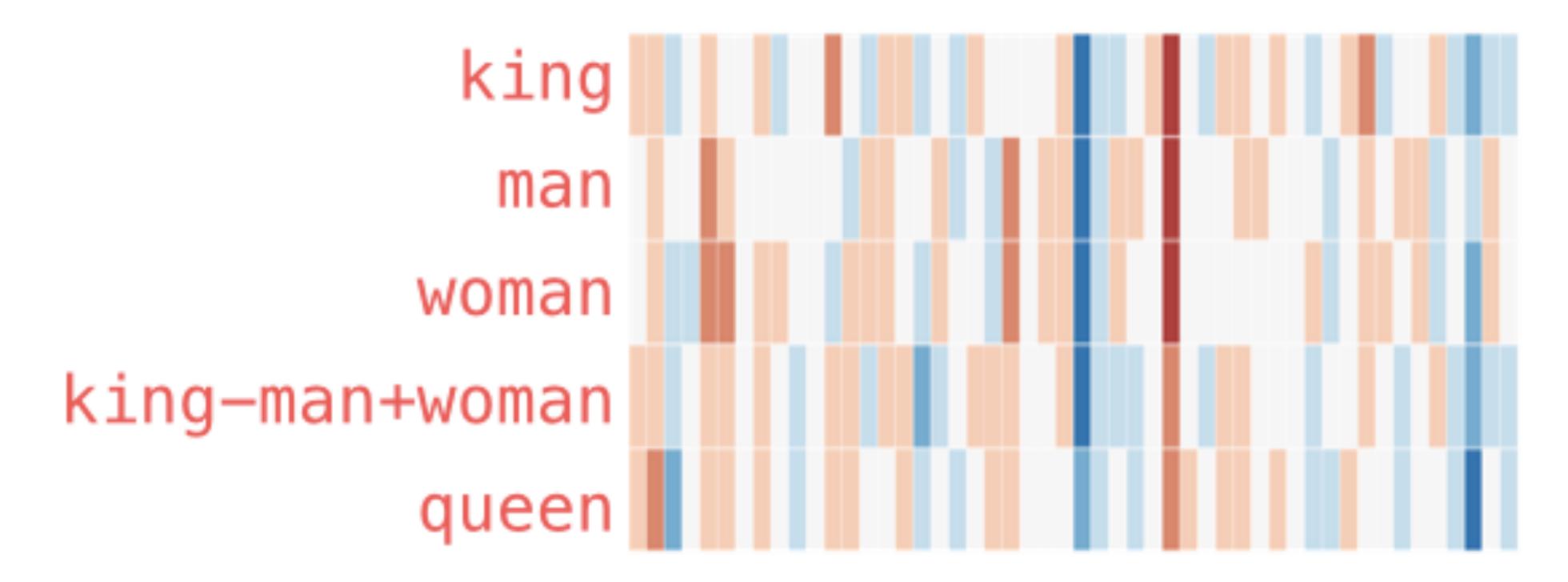


An example of a 2D embedding space for Movies



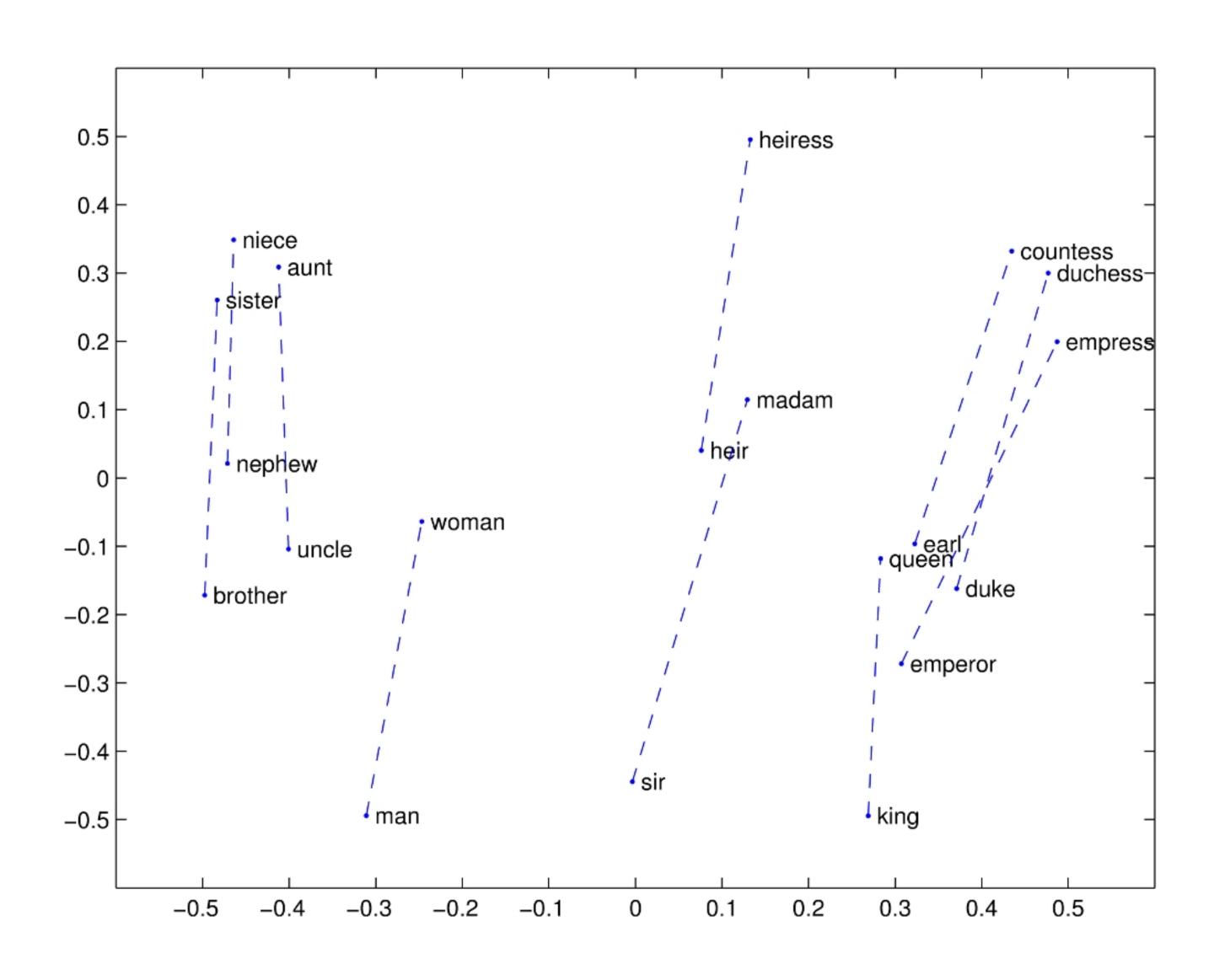
Vectors can be operated upon

king − man + woman ~= queen

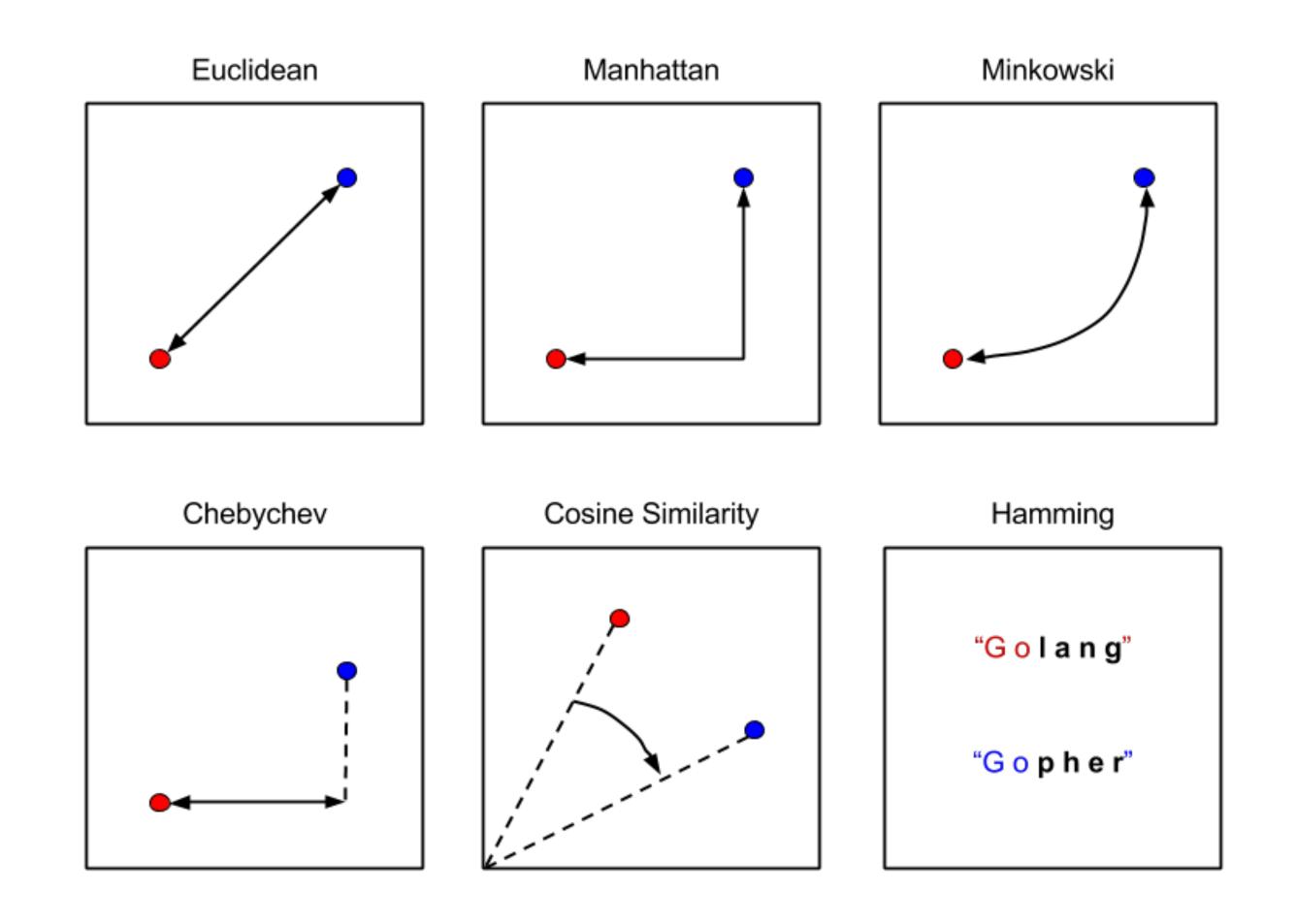


https://jalammar.github.io/illustrated-word2vec

Vector Difference between Pairs of Word Vectors



A few of the many Distance Metrics



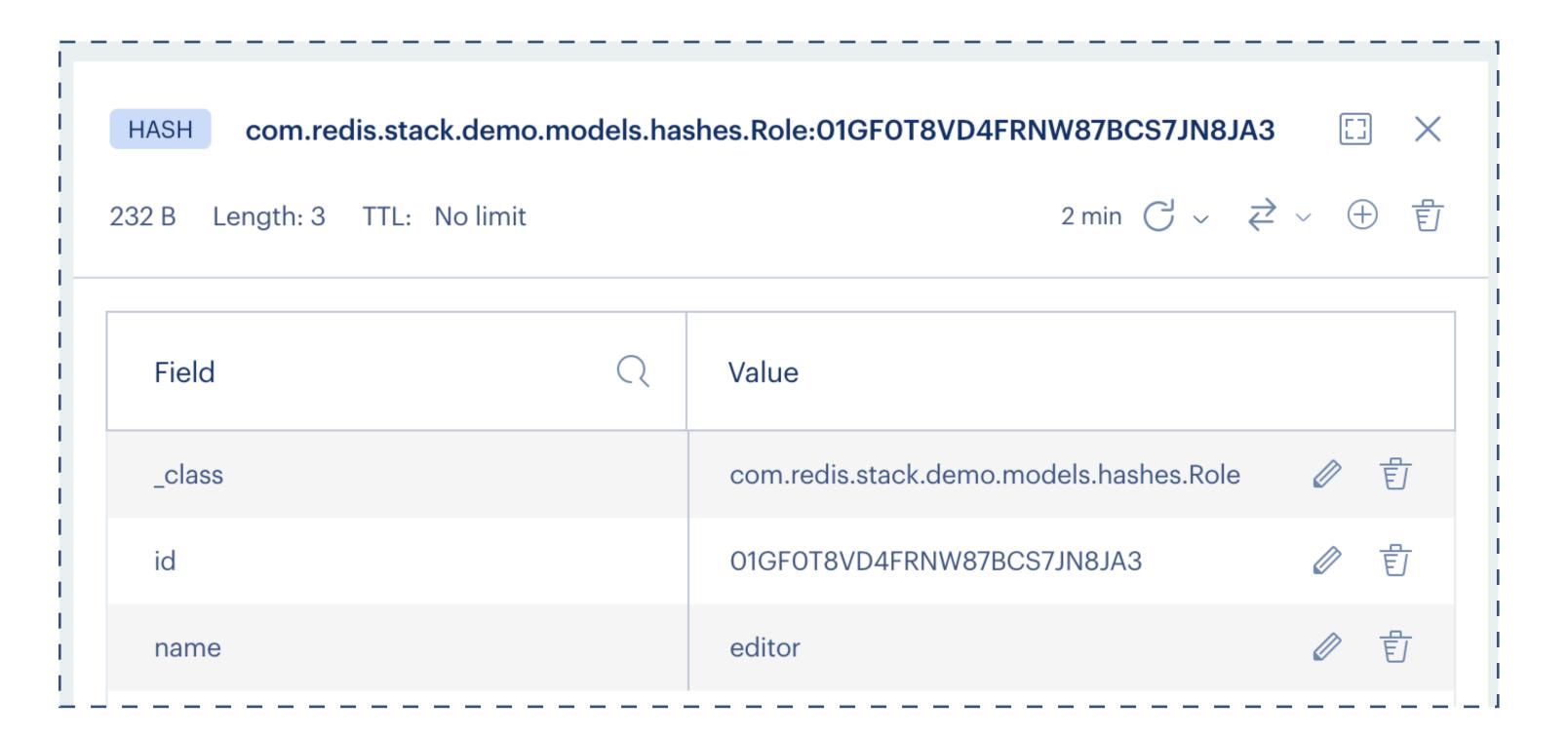
Redis OM Spring

Extending Spring Data Redis

Model -> Redis Hash

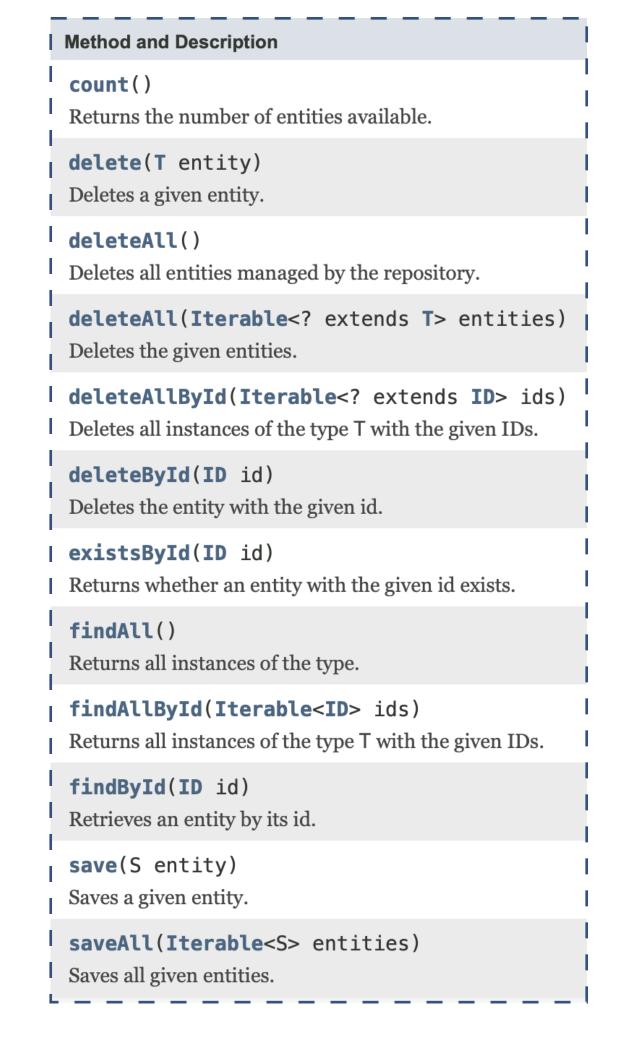
CRedisHash Annotation

```
@Data
@Builder
@RedisHash
public class Role {
   @Id
   private String id;
   private String name;
}
```



Spring Data Repositories

From Spring Data Redis



Search Index Generation

CIndexed Annotation

```
@Data
@Builder
@RedisHash
public class Role {
   @Id
   private String id;

   @Indexed
   private String name;
}
```

```
@Repository
public interface RoleRepository
  extends CrudRepository<Role, String> {
    Optional<Role> findFirstByName(String name);
}
```

More Complex & Searchable Models

@Searchable / @Indexed / @Bloom Annotation

```
@Data
@RedisHash
public class User {
  @Id private String id;
  @Searchable private String name;
  @Bloom(name = "bf_company_email", capacity = 100000, errorRate = 0.001)
  @Indexed
  private String email;
  private String password;
  @Transient private String passwordConfirm;
  @Reference private Set<Role> roles;
     audit fields
  @CreatedDate private Date createdDate;
  @LastModifiedDate private Date lastModifiedDate;
```

More Complex & Searchable Models

@Searchable / @Indexed / @Bloom Annotation

```
@Repository
public interface UserRepository extends CrudRepository<User, String> {
   Iterable<User> findByNameStartingWith(String prefix);

   Optional<User> findFirstByEmail(String email);

  boolean existsByEmail(String email);
}
```

Model -> Redis JSON

@Document Annotation

```
@Document
public class FictionalCharacter {
  @Id
 @Indexed private String id;
  // Indexed for exact text matching
  @Indexed private String actorFirstName;
  @Indexed private String actorLastName;
  // Indexed for numeric matches
 @Indexed private Integer actorAge;
  // Indexed for Full Text matches
  @Searchable private String quote;
  // Indexed for Geo Filtering
  @Indexed private Point actorLocation;
    Nest indexed object
  @Indexed private Address actorAddress;
  @Indexed private Set<String> skills;
```

```
com.redis.stack.demo.models.json.FictionalCharacter:01GF0T90HQTCTSSD772B26N885
                                                                                     <1 min C ~ 影
Key Size: 554 B Length: 8 TTL: No limit
  "id": "01GF0T90HQTCTSSD772B26N885"
  "actorFirstName": "Zoe"
 "actorLastName": "Saldana"
 "actorAge": 43
  "quote": "I Am Going To Die Surrounded By The Biggest Idiots In The Galaxy."
  "actorLocation": "-118.399968,34.073087"
  "actorAddress": {
    "houseNumber": "107"
    "street": "S Beverly Glen Blvd"
    "city": "Los Angeles"
    "state": "CA"
    "postalCode": "90024"
    "country": "US"
 "skills": [
    "0": "martial_arts"
    "1": "skills"
```

More Repository Superpowers w/ JSON

@Searchable / @Indexed

```
{\sf public} interface {\sf FictionalCharacterRepository} extends {\sf RedisDocumentRepository} {\sf FictionalCharacter}, {\sf String}> {\sf String}
  // Find people by age range
  Iterable<FictionalCharacter> findByActorAgeBetween(int minAge, int maxAge);
  // Find people by their first and last name
  Iterable<FictionalCharacter> findByActorFirstNameAndActorLastName(String firstName, String lastName);
  // Draws a circular geofilter around a spot and returns all people in that
  // radius
  Iterable<FictionalCharacter> findByActorLocationNear(Point point, Distance distance);
  // Performs full text search on a characters quote
  Iterable<FictionalCharacter> searchByQuote(String text);
  // Performing a tag search on city
  Iterable<FictionalCharacter> findByActorAddress_City(String city);
    Search Characters that have one of multiple skills (OR condition)
  Iterable<FictionalCharacter> findBySkills(Set<String> skills);
    Search Characters that have all of the skills (AND condition):
  Iterable<FictionalCharacter> findBySkillsContainingAll(Set<String> skills);
```

Auto-Complete Out of the Box

@AutoComplete / @AutoCompletePayload

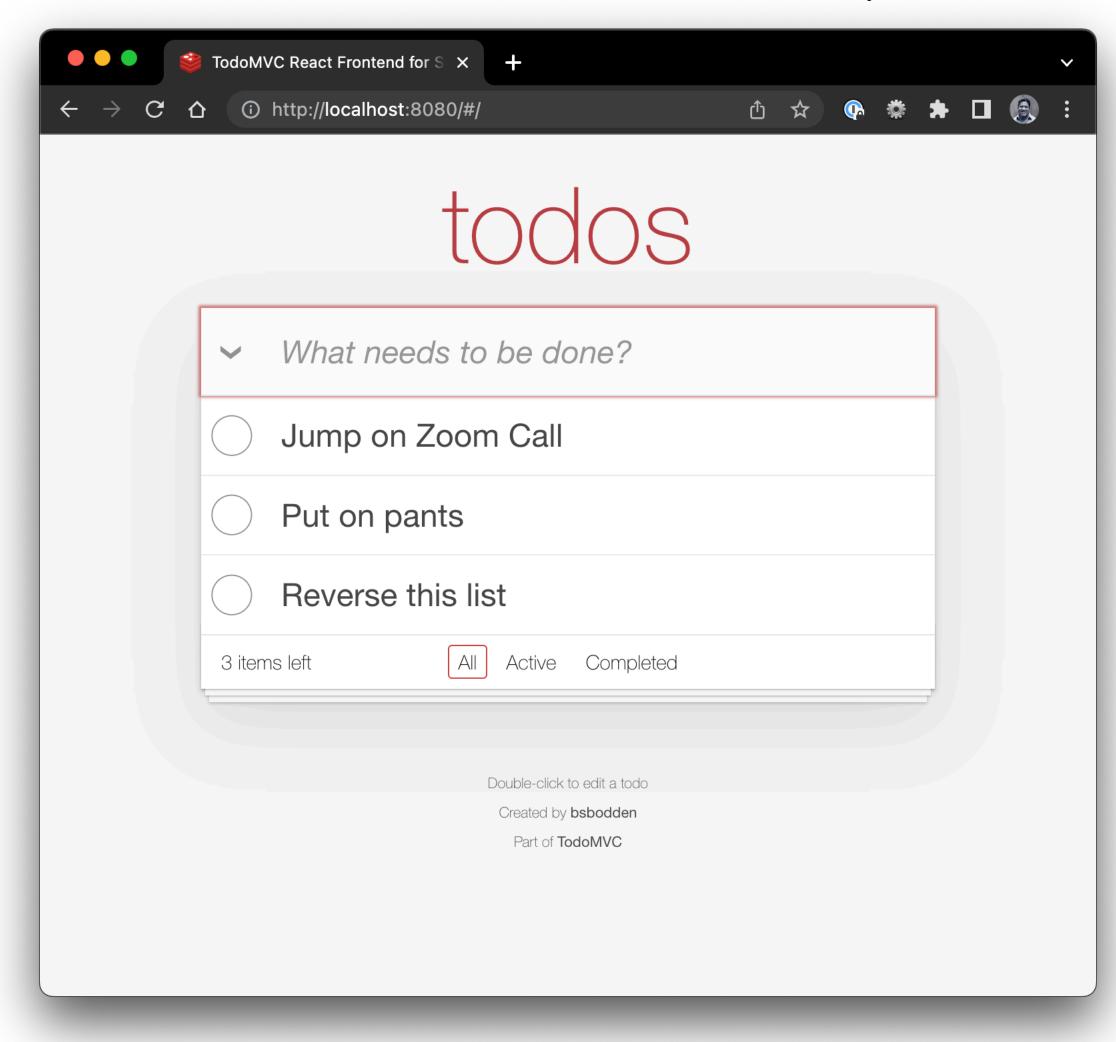
```
@Document
public class CharacterEntry {
    @Id private String id;
    @AutoComplete @NonNull private String name;
    @AutoCompletePayload("name") private String type;

@SerializedName("first appearance")
    @AutoCompletePayload("name") private String firstAppearance;
    @AutoCompletePayload("name") private Integer appearances;
}
```

```
public interface CharacterEntryRepository
        extends RedisDocumentRepository<CharacterEntry, String> {
    List<Suggestion> autoCompleteName(String query);
    List<Suggestion> autoCompleteName(String query, AutoCompleteOptions options);
}
```

Redis OM Todos

A Basic Redis OM Example



Searching...

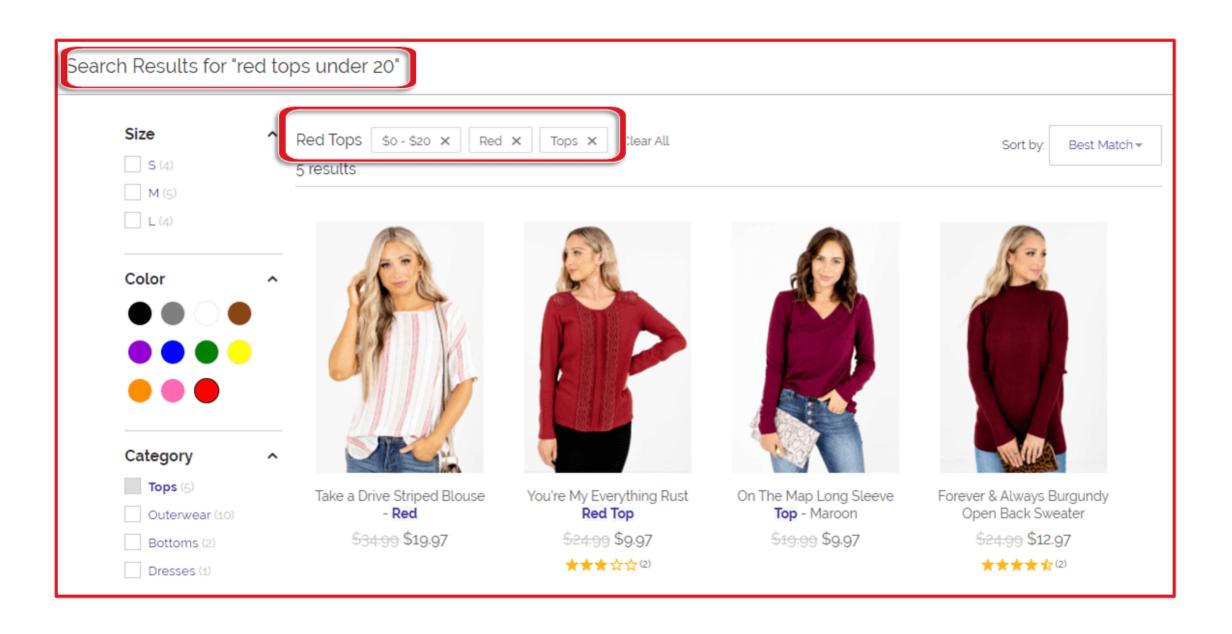
High Expectations

There's a growing expectation for effective search functionality

Unstructured Data is "high-dimensional"

Needs to capture "meaning and context" in unstructured data

Encompasses Recommendation Engines and Similarity Search



Modern Vace - Tan/White - Project 62***

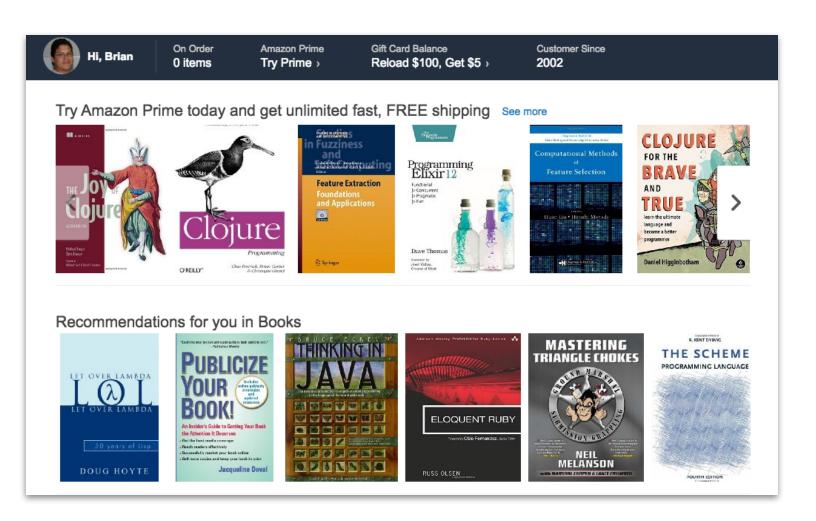
S19.59

Add to requery

The state of the s

Visual Search

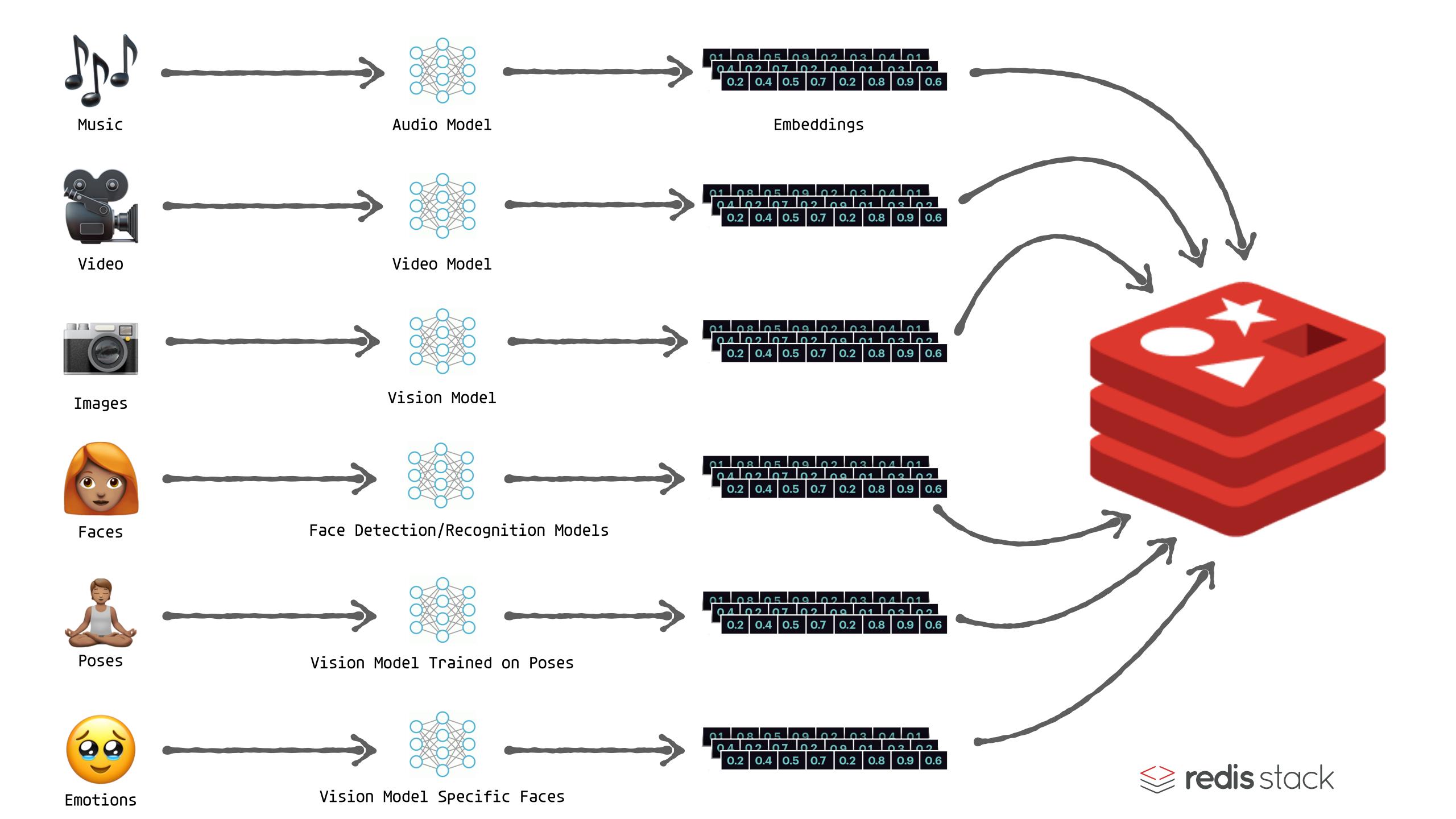
Natural Language Search



Recommenders

Vector Similarity in Redis

Redis as Vector Database



Vector Similarity in Redis

Index and query vector data stored as BLOBs in Redis Hashes/JSON

3 distance metrics: Euclidean, Internal Product and Cosine

2 indexing methods: HNSW and Flat

Hybrid queries combined with GEO, TAG, TEXT or NUMERIC

Celebrity Match Demo

Facial Similarity Search

Face Detection/Extraction

A peek under the hood

Let's look at the code to detect and extract faces...

Celebrity Match Demo

Breakdown

- A Celebrity domain mapped to Redis Hashes
- 2 Spring Data Repositories powered by RediSearch
- @Indexed annotated field for image embeddings
- @Vectorize annotated field to generate embeddings
- Upload image, detect/extract faces, gen. input embedding
- Entity Streams to query for K nearest neighbors
- Display results

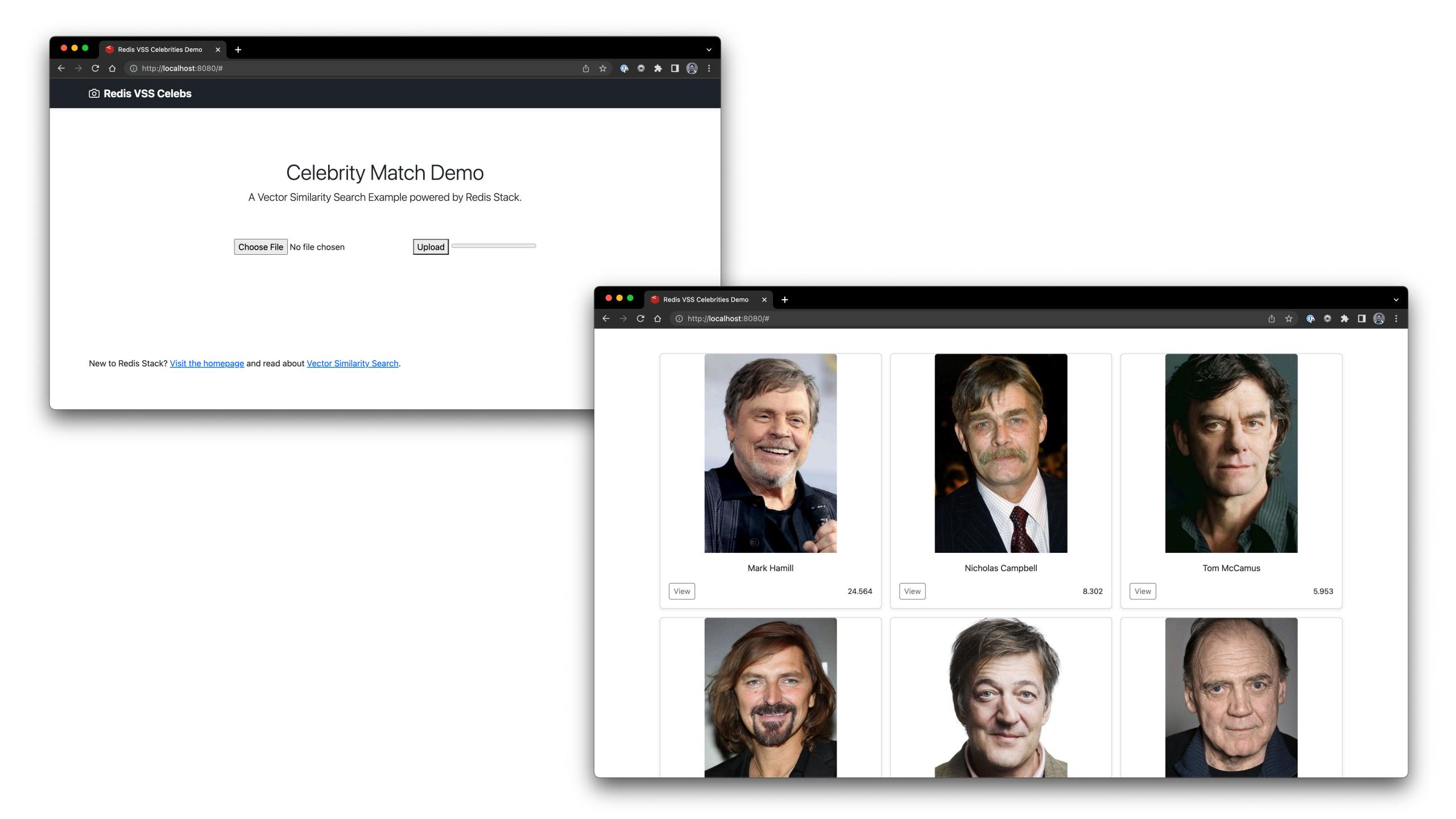
CIndexed and CVectorize

TLDR

The source of the embeddings and how to generate them

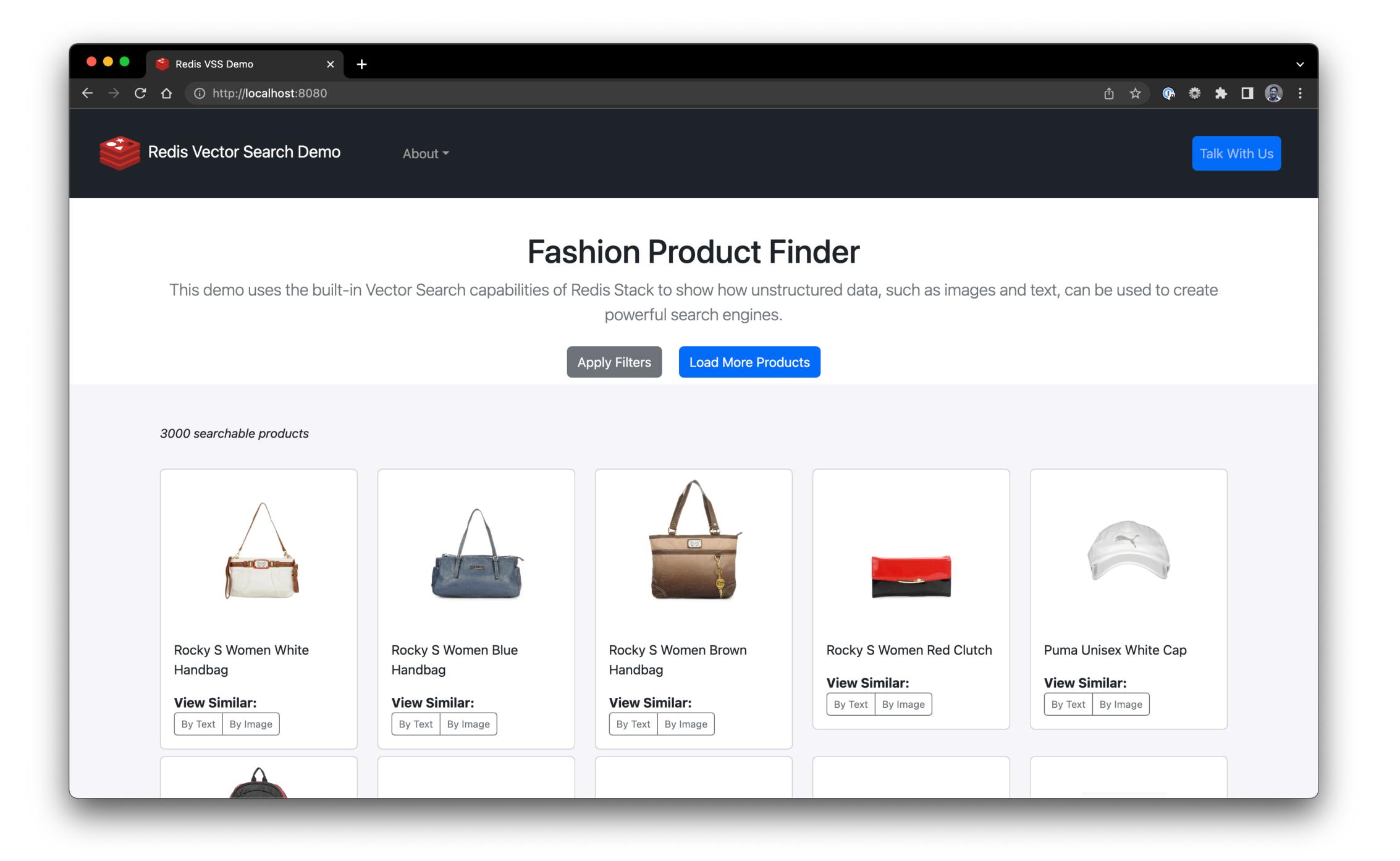
How to generate the Vector search schema field

```
@Vectorize(//
    destination = "imageEmbedding",
    embeddingType = EmbeddingType.FACE
@NonNull
private String imageResource;
@Indexed(//
    schemaFieldType = SchemaFieldType.VECTOR, //
    algorithm = VectorAlgo.HNSW, //
    type = VectorType.FLOAT32, //
    dimension = 512, //
    distanceMetric = DistanceMetric.L2, //
    initialCapacity = 10
private byte[] imageEmbedding;
```



Fashion Product Finder

Image & Text - Hybrid Similarity Search



The tools and techniques to unlock the value in Unstructured Data have evolved greatly...

Databases like Redis and frameworks like Redis OM Spring can help!

https://github.com/bsbodden/roms-vss-celebs

https://github.com/redis/redis-om-spring

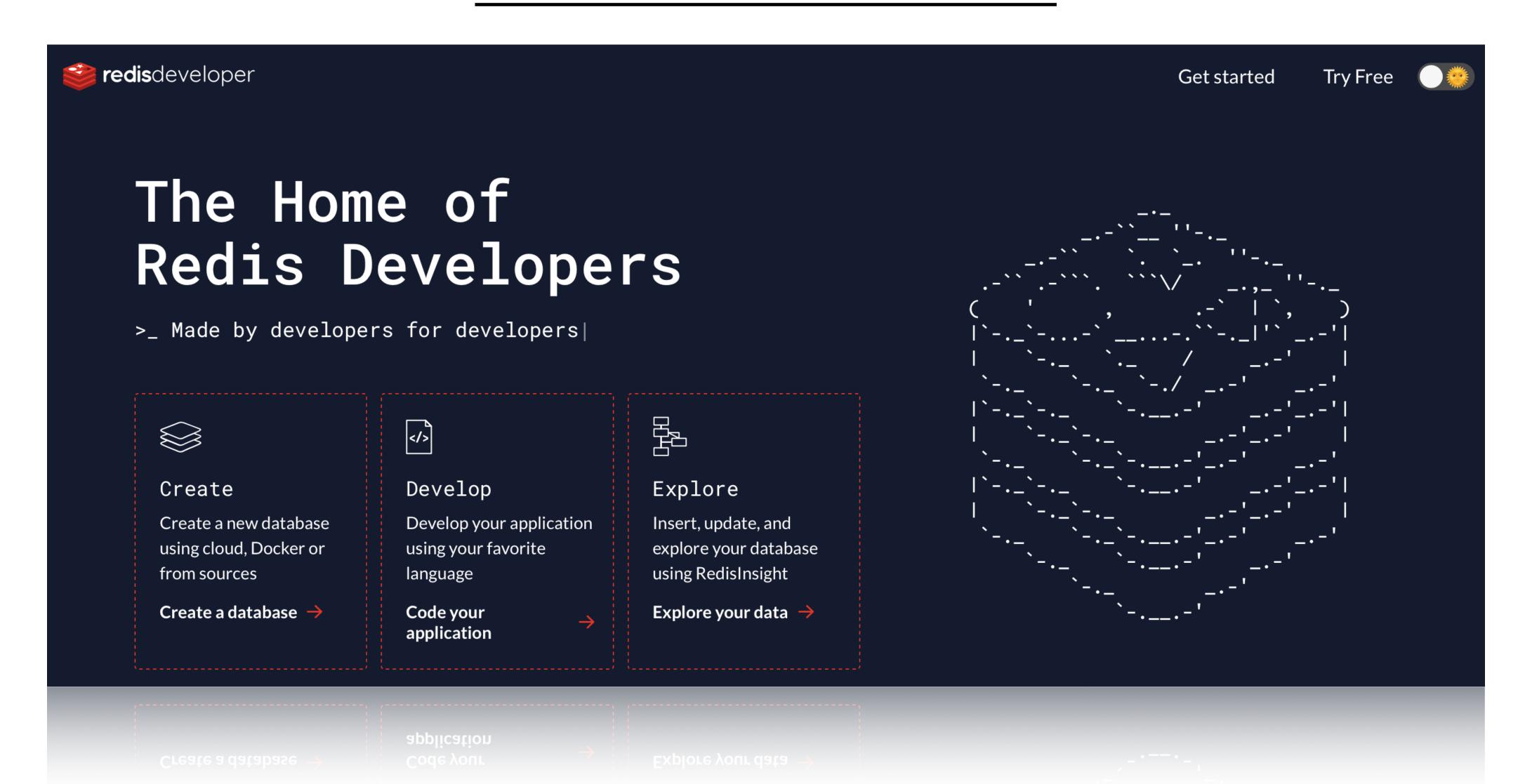
https://redis.io/docs/stack/get-started/tutorials/stack-spring/

https://redis.com/blog/rediscover-redis-for-vector-similarity-search/

https://github.com/redis/jedis

Learn more at Redis Developer

https://developer.redis.com

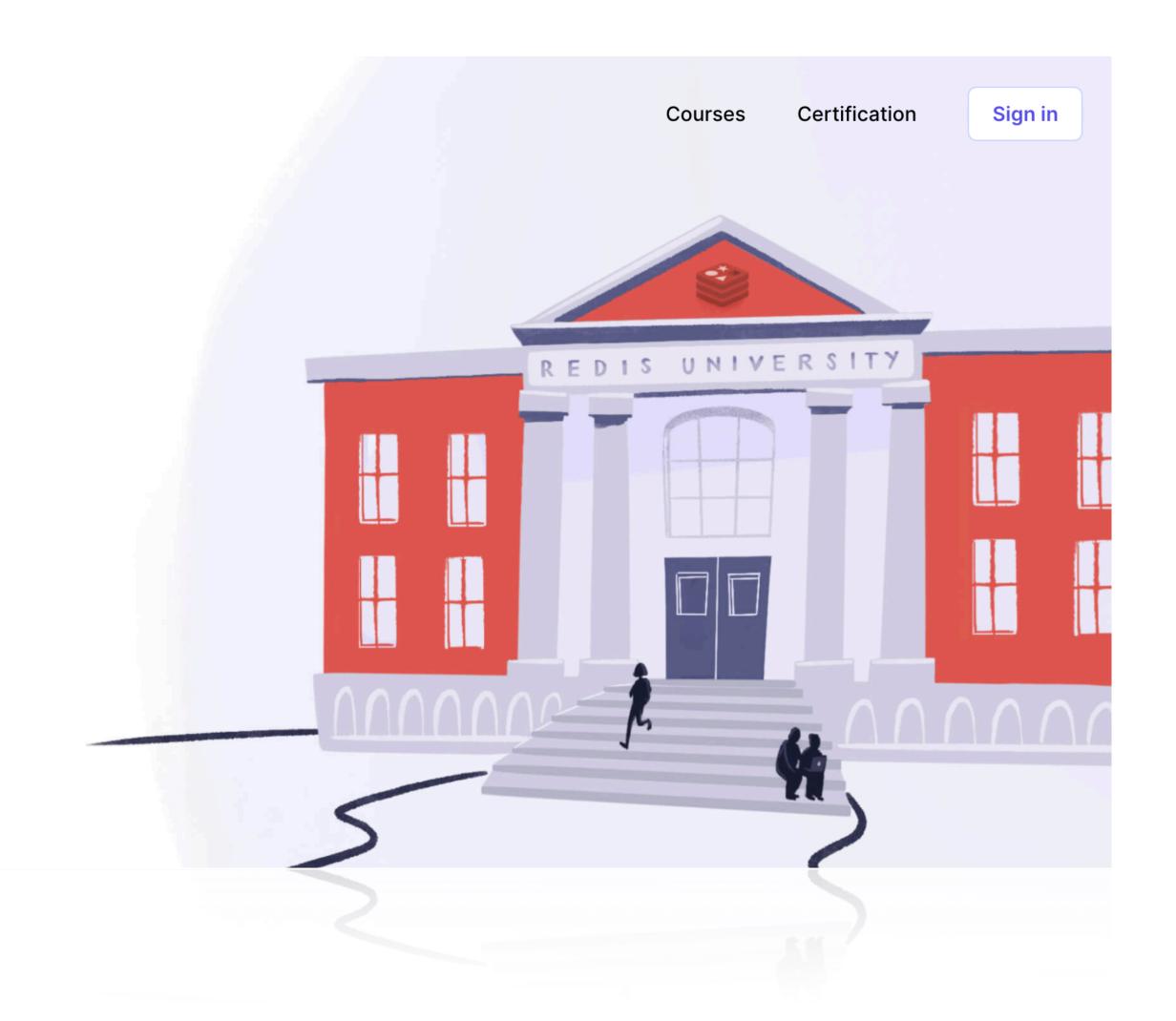


Learn more at Redis University

https://university.redis.com

Learn Redis at Redis University

Free online courses taught by Redis experts.



Thank you!!!

Thank you!!!